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Introduction 

Camera trapping surveys for the Southern Brown Bandicoot (SBB; Isoodon obesulus) in the 

Eden forests have been undertaken by Forestry Corporation of NSW over a 11-year period 

and are ongoing as part of monitoring specified in an associated species management plan. 

 

DPI Forest Science was requested to process camera trap data from the above monitoring 

program and undertake trend analysis to assess occupancy of the SBB. As part of the 

analysis, the influence of potential climatic (annual rainfall), biotic (activity of predators) and 

disturbance (fire and harvesting) variables on dynamic processes (colonisation and extinction) 

that influence the meta-population was assessed. Based on the outcomes of the analysis, 

recommendations to improve the ongoing monitoring and management of the species are 

provided.  

 

Methods 

Study area 

The study was carried out in East Boyd, Nadgee, Timbillica and Yambulla State Forests south 

of Eden (Fig. 1.). A total of 40 monitoring sites were established as part of a Species 

Management Plan, which was developed to assess the effectiveness of prescription measures 

aimed at minimising impacts of harvesting on the SBB, which included excluding assumed 

suitable habitat (primarily Yertchuk Eucalyptus consideniana and shrub dominated forest 

communities) from harvesting. Twenty monitoring sites were established within or nearby to 

this habitat type, while 20 sites were within other forest types. Fox baiting was carried-out in 

the area sporadically on a rotating panel prior to 2008 (initially for livestock protection), but 

from 2008-2018 it was continuous, on average every 6-8 weeks. Regular baiting has lapsed 

since 2018 due to staffing issues.  

 



 

 

 

Fig.1. Map of study area with camera monitoring sites, SBB habitat (Yertchuk and shrub 

dominated forest communities) and predator baiting sites. 

 



 

 

Camera trapping and processing 

In all, 40 sites were sampled among years (Table 1), with each site sampled using two 

cameras, one Infrared camera (Scoutguard SG550) and one white-flash (Scoutguard SG560) 

deployed ~100m apart. The use of two cameras with a similar spacing has been suggested in 

pilot assessments of detectability for the species in the Grampians, Victoria (Stevens et al. 

2010). The Scoutguard SG550 was programmed to take three consecutive images per trigger, 

whereas the Scoutguard SG560 took a single image, with both cameras having a quiet period 

of 5 minutes between triggers. The cameras were tied to a tree at approximately 50-75cm 

height and angled towards a lure (truffle oil within a tea-strainer or vent cowling pegged into 

the ground) approximately 1.5m from the camera. The vegetation around the lure was cleared 

to bare earth at each camera deployment. 

 

Images obtained from 11-years (2009-2019) of sampling were identified and tagged in ExifPro 

V2.1 using available keys and reference material (Fig. 2a-2d). Tagged images were exported 

as a .csv file with metadata (including date and timestamp) and site details for each image. 

 



 

 

 

 
 

Fig. 2. Examples of images that were collected during the monitoring program: a) Southern Brown Bandicoot, b) Long-nosed Bandicoot and c) 

Long-nosed Potoroo and d) Red Fox with swamp wallaby carcass.

a) b) c) 

d) 



 

 

Occupancy modelling 

A dynamic occupancy modelling framework was used to estimate SBB occupancy in the Eden 

forests between 2009 and 2019 based on detections using passive infrared cameras. We 

considered this approach to be superior to modelling changes in bandicoot activity because 

occupancy modelling accounts for imperfect detection, even though the number of sites 

available was relatively low. Sampling was undertaken for at least two weeks in multiple 

seasons following the initial survey in 2009 (spring only). For the first few years sampling 

occurred 3-4 times a year, but regular sampling was undertaken in spring and autumn in 

subsequent years. As such, analyses focused on just these two seasons while data for 2009 

and 2010 were pooled to provide more data from which to build relationships for initial 

occupancy. Since two cameras separated by~100m were used at each site, we considered 

these were not independent which is a violation of the assumption of independence of ‘sites’ 

(cameras) for the analysis. To account for this potential, data from both cameras were pooled 

and the analysis was undertaken at the site-level rather than at the level of the camera.  

 

A detection history matrix was generated such that each sampling day (9am-9am to match 

local rainfall data) was assigned with a “1” if a SBB was detected and a “0” if not detected. 

The detection history matrix was restricted to a 14-day sampling window in each season 

(spring and autumn) to standardise the sampling effort among sites. For sites where both 

cameras did not sample on a given night (e.g., camera trap failure), the sampling day was 

assigned as missing data (“NA”). For sites where only one camera did not sample, data from 

the other operating camera was used to designate the detection history. Unbalanced sampling 

effort (i.e., one camera vs two cameras) per site was accounted for when modelling detection 

probability (see below). 

 

 

 

 

 



 

 

Table 1. Summary of sampling effort (at least one operational camera) by season among years. 

Year of survey Number of 
sites (autumn) 

Number of sites 
(spring) 

Naïve 
Occupancy of 
SBB 

2009 0 39 0.08 

2010 40 40 0.25 

2011 37 39 0.33 

2012 37 40 0.33 

2013 40 40 0.55 

2014 38 37 0.35 

2015 40 40 0.38 

2016 40 40 0.15 

2017 40 40 0.18 

2018 40 40 0.18 

2019 40 31 0.10 

 

 

A hierarchical approach was taken to modelling in order to reduce the total number of 

candidate models. We first modelled detection probability to account for imperfect detection 

associated with surveys and held initial occupancy, colonisation and extinction constant. 

Detection probability was allowed to vary with season of survey, camera trapping effort (1 or 

2 cameras) or held constant (null model) among all ‘visits’ (sampling days) to a site. The top 

model was carried forward to model initial occupancy (i.e., occupancy in 2009). 

 

Initial occupancy was modelled while holding colonisation and extinction constant, which is 

the standard approach used for dynamic occupancy modelling. Several site-based variables 

were included as covariates for occupancy – forest type extent within 200 m buffer of each 

site (messmate yellow stringybark communities, silvertop ash communities, stringybark 

coastal, woollybutt mixed coastal eucalypt communities, yertchuk communities), topographic 

position index (raw and stretched), elevation (midpoint between cameras), extent of SBB 

habitat exclusion within 200 m buffer of each site, LiDAR-derived metrics for cover using 

several height bins (2 m) in a 0-15 m vertical profile as well as canopy cover and average 

canopy height, extent of four fire age classes (<5 years, 5-15 years, >15-30 years and >30 

years) within a 200 m buffer of each site, extent of four harvesting age classes (<5 years, 5-

15 years, >15-30 years and >30 years) within a 200 m buffer of each site and annual rainfall 

preceding the year of sampling (Table 2). A 200 m buffer was used to encompass local 

heterogeneity surrounding the two cameras used at each site. The three age classes were 

based on the presence of open vegetation structure soon after harvesting or fire disturbance, 

and then gradual thickening from regeneration followed by gradual opening 30 years after 

disturbance. Fire extent included by both, hazard reduction and wildfire, with records for the 

latter available from 1992, whereas wildfire data was available prior to this. A null model that 

held initial occupancy constant across sites was also included in the set of candidate models. 



 

 

The influence (direction and magnitude) of a supported covariate was assessed by plotting 

occupancy estimates that were generated while holding all other supported covariates at the 

median value. 

 

Colonisation (proportion of unoccupied sites where the species was detected in the following 

season) and extinction (proportion of occupied sites where the species was not detected in 

the following season) parameters were then modelled using the top model for initial 

occupancy. Variables included as covariates for these parameters were extent of four fire age 

classes (<5 years, 5-15 years, >15-30 years and >30 years), extent of four harvesting age 

classes (<5 years, 5-15 years, >15-30 years and >30 years), annual rainfall preceding the 

year of sampling number and cat activity (no. of images of Felis catus standardised for 

sampling effort per site). Foxes were not included because they had a low occurrence in the 

study area (mean±se = 3±1 images per year Vs mean = 46 images per year for cats; Table 

4). A null model where these parameters were held constant was also included. 

 

Prior to analysis, covariates were examined for collinearity. None of the covariates considered 

were highly correlated (r>0.7). 



 

 

Table 2. Summary statistics (minimum, maximum and mean) for covariates used in modelling 

of occupancy. A 200 m buffer around the mid-point of cameras defined the extent for 

environmental variables.  

Covariate Min Max Mean 

Topographic Position Index (TPI) -10.0 24.7 1.0 

TPI (stretched) 85.0 231.0 131.1 

Elevation (m ASL) 25.0 420.0 175.9 

Extent (%) of SBB habitat exclusion  0 100 9.0 

Annual rainfall preceding year of survey 401.6 1183.4 862.6 

Extent (%) of Messmate/Yellow Stringybark communities 0 75.9 16.1 

Extent (%) of non-forest, she-oak, scrub, rainforest 0 54.0 5.9 

Extent (%) of silvertop ash communities 0 98.4 37.8 

Extent (%) of stringybark/coastal 0 68.2 13.0 

Extent (%) of woollybutt/mixed coastal eucalypt 0 24.1 1.0 

Extent (%) yertchuk communities 0 100.0 24.1 

Extent (%) of recent fire (<5 years) 0 0.010 0.001 

Extent (%) of intermediate fire (5-15 years) 0 0.010 0.003 

Extent (%) of old fire (>15-30 years) 0 0.010 0.003 

Extent (%) of long unburnt (>30 years) 0 0.010 0.002 

Extent (%) of recent harvesting* (<5 years) 0 42.0 1.4 

Extent (%) of intermediate harvesting* (5-15 years) 0 70.9 4.0 

Extent (%) of old harvesting* (>15-30 years) 0 98.3 14.1 

Extent (%) of long undisturbed (>30 years) 0 100.0 43.1 

Extent (%) of unlogged 1 100.0 37.8 

Extent (%) of recent thinning (<5 years) 0 98.8 6.0 

Extent (%) of intermediate thinning (5-15 years) 0 98.8 9.2 

Extent (%) of old thinning (>15-30 years) 0 25.0 0.5 

*sawlog removal.



 

 

Results 

Annual rainfall 

Annual rainfall in the calendar year preceding surveys was variable but generally well below 

the long-term average for Eden (846 mm; BOM weather station ID: 069015 - Eden (Marine 

Rescue Eden)), especially in the last four years of the monitoring program (Fig. 3). 

 

 

Fig. 3. Column graph illustrating annual calendar year rainfall in the year preceding surveys. 

Dashed line indicates long-term average (846 mm per annum). 

 

Annual disturbance (fire and harvesting) 

The extent of fire, harvesting (sawlog removal) and thinning of different age classes across 

monitoring sites was variable among years (Table 3). 
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Table 3. Total extent of fire, harvesting (sawlog removal) and thinning within 200 m buffer of all sites between 2009 and 2019. 

Year 
Extent of fire within 200 m buffer (ha) Extent of harvesting within 200 m buffer (ha) Extent of thinning within 200 m buffer (ha) 

<5 yrs 5 to 15 yrs 15 to 30 yrs > 30 yrs <5 yrs 5 to 15 yrs 15 to 30 yrs > 30 yrs <5 yrs 5 to 15 yrs 15 to 30 yrs 

2009 58 225 96 65 1 46 93 169 46 5 0 

2010 75 179 107 82 1 39 87 181 44 18 0 

2011 75 169 97 103 0 37 69 202 51 18 0 

2012 62 136 143 103 0 28 76 205 56 26 0 

2013 73 137 117 115 1 15 64 230 46 37 0 

2014 60 148 120 115 5 15 63 231 33 49 2 

2015 41 94 180 128 9 15 63 231 22 60 2 

2016 47 101 180 128 9 9 69 231 19 64 5 

2017 48 101 180 127 13 7 65 238 6 77 5 

2018 45 64 221 127 17 4 68 234 5 78 5 

2019 36 86 210 127 21 7 63 231 4 79 5 



 

 

Camera trapping summary results 

Among all years of monitoring, 70,699 images contained fauna that were assigned to a 

species, genus, broader group (reptile, small mammal, macropod, etc.) or were unable to be 

identified. Of these, 2103 images were assigned as definite SBB, representing 334 detections 

across all sites and years of monitoring. In all, 674 images of key predators (foxes, cats and 

dogs) were recorded. The activity (total no. of images) of key predators was variable among 

years. Overall, fox and wild dog activity was low, whereas cat activity was relatively higher 

(Table 4). 

 

Table 4. Total number of images of predators detected on cameras between 2009 and 2019.    

Year 
Foxes Cats Wild Dogs 

No. of images No. of sites No. of images No. of sites No. of images No. of sites 

2009 0 0 0 0 10 4 

2010 13 4 54 14 19 7 

2011 1 1 52 12 30 9 

2012 7 2 43 14 22 8 

2013 1 1 54 12 7 3 

2014 2 1 91 11 7 4 

2015 0 0 45 11 7 3 

2016 0 0 49 14 5 3 

2017 5 1 62 16 10 4 

2018 1 1 39 14 4 3 

2019 4 3 13 9 5 4 

 

Naïve occupancy  

Naïve occupancy, for SBB, which does not account for imperfect detection associated with 

surveys, ranged between 0.08 and 0.55 and fluctuated between years (Table 1).  

 

Detection  

A single candidate model that allowed detection probability to vary with season was supported 

(Table 5). Daily detection probability was marginally (4%) higher in autumn (0.12) compared 

to spring (0.08), but still relatively low (Fig. 4). This is similar to a previous estimate found for 

the same species in the Grampians (Rudolph et al. 2010). Use of one or two cameras per site 

was not supported as an influence on detectability based on AIC. 

 

 

 

 

 

 



 

 

Table 5. List of models for Southern Brown Bandicoot detection probability. Supported models 

are shaded in grey. 

Model dAIC weight npar n2ll 

psi(.),gam(.),eps(.),p(season) 0 0.9951 5 2507.37 

psi(.),gam(.),eps(.),p(.) 11.3 0.0035 4 2520.68 

psi(.),gam(.),eps(.),p(effort) 13.13 0.0014 5 2520.5 
Season = Autumn or Spring. 
Effort = # camera trap nights 

 

  



 

 

 

Fig. 4. Plot illustrating the influence of season on daily detection probability for Southern Brown 

Bandicoot. 

 

Initial (2009) occupancy 

In all, 26 candidate models assessed as potential explanatory variables for initial occupancy 

for SBBs (Table 6). Two models had support, with the top model having more than double the 

weight of the other supported model, indicating less of an influence on initial occupancy for 

covariates in the second model. The top model allowed initial occupancy to vary with 

topographic position (TPI) whereas the other supported model allowed initial occupancy to 

vary with understorey cover (LiDAR density at 6-8 m). 

 

 

 

 



 

 

Table 6. List of models for Southern Brown Bandicoot initial occupancy. Supported models are shaded in grey. 

Model dAIC weight npar n2ll 

psi(tpi),gam(.),eps(.),p(season) 0 0.2956 6 2500.91 

psi(lidar_6-8m),gam(.),eps(.),p(season) 1.7 0.1262 6 2502.62 

psi(lidar_8-10m),gam(.),eps(.),p(season) 2.52 0.0838 6 2503.43 

psi(fire),gam(.),eps(.),p(season) 2.66 0.0781 9 2497.57 

psi(thinning),gam(.),eps(.),p(season) 3.17 0.0606 7 2502.08 

psi(woollybutt_mixed coastal eucalypt),gam(.),eps(.),p(season) 3.74 0.0455 6 2504.66 

psi(.),gam(.),eps(.),p(season) 4.46 0.0318 5 2507.37 

psi(lidar_4-6m),gam(.),eps(.),p(season) 4.5 0.0311 6 2505.42 

psi(lidar_10-12m),gam(.),eps(.),p(season) 4.98 0.0245 6 2505.89 

psi(non-forest/she-oak/scrub/rainforest),gam(.),eps(.),p(season) 5.14 0.0226 6 2506.06 

psi(lidar_12-14m),gam(.),eps(.),p(season) 5.78 0.0164 6 2506.69 

psi(elevation),gam(.),eps(.),p(season) 5.95 0.0151 6 2506.87 

psi(yertchuk communities),gam(.),eps(.),p(season) 6.09 0.0141 6 2507 

psi(silvertop ash communities),gam(.),eps(.),p(season) 6.26 0.0129 6 2507.18 

psi(stringybark/coastal),gam(.),eps(.),p(season) 6.34 0.0124 6 2507.25 

psi(habitat exclusion),gam(.),eps(.),p(season) 6.38 0.0122 6 2507.29 

psi(non-exclusion),gam(.),eps(.),p(season) 6.38 0.0122 6 2507.29 

psi(lidar_2-4m),gam(.),eps(.),p(season) 6.39 0.0121 6 2507.3 

psi(canopy height),gam(.),eps(.),p(season) 6.41 0.012 6 2507.32 

psi(lidar_0-2m),gam(.),eps(.),p(season) 6.43 0.0119 6 2507.34 

psi(lidar_14-15m),gam(.),eps(.),p(season) 6.43 0.0119 6 2507.34 

psi(messmate/yellow stringybark communities),gam(.),eps(.),p(season) 6.44 0.0118 6 2507.35 

psi(canopy cover),gam(.),eps(.),p(season) 6.46 0.0117 6 2507.37 

psi(rainfall),gam(.),eps(.),p(season) 6.46 0.0117 6 2507.37 

psi(harvesting),gam(.),eps(.),p(season) 7.23 0.008 9 2502.14 

psi(ft),gam(.),eps(.),p(season) 10.26 0.0017 10 2503.17 
tpi = topographic position index.  



 

 

lidar_0-2m, lidar_2-4m; lidar_4-6m, lidar_6-8m, lidar_8-10m, lidar_10-12m, lidar_12-14m and lidar_14-15m = cover derived from LiDAR at different height classes/bins.  
canopy cover = canopy cover derived from LiDAR. 

canopy height = average height of canopy derived from LiDAR. 
woollybutt mixed coastal eucalypt, silvertop ash communities, messmate/yellow stringybark communities, yertchuk communities, non-forest/she-oak/scrub/rainforest, stringybark/coastal = extent of 
each broad forest type. 

ft = an additive model with the extent of each broad forest type. 
thinning = extent of thinning of three age classes: (recent; <5 years), (intermediate; 5-15 years) and (old; >15-30 years) in an additive model. 
harvesting = extent of harvesting of four age classes (recent; <5 years), (intermediate; 5-15 years), (old; >15-30 years) and (long undisturbed; >30 years) in an additive model. 

fire = extent of fire of four age classes (recent; <5 years), (intermediate; 5-15 years), (old; >15-30 years) and (long undisturbed; >30 years) in an additive model.  
habitat exclusion = extent of SBB habitat exclusion. 
non-exclusion = extent of non-SBB habitat exclusion. 

rainfall = total rainfall in the calendar year preceding sampling. 
elevation = average elevation of camera locations at each site. 



 

 

Initial occupancy was strongly influenced by topographic position with occupancy greatest on 

upper slopes and declining along a ridge-gully gradient (Fig. 5a). Initial occupancy was also 

negatively associated with understorey cover in the 6-8 m height bin (based on LiDAR) (Fig. 

5b). Error bars were relatively wide for these relationships most likely because of the low 

number of sites in the monitoring program, suggesting a degree of caution in interpreting these 

patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. 5. Relationships between initial occupancy and: a) Topographic position index (TPI_0250) 

and b) LiDAR density at 6-8 m. 

a) 

b) 



 

 

Colonisation and Extinction 

In all, six candidate models assessed extinction probability for SBBs (Table 7). A single model 

was supported which allowed extinction probability to vary with the extent of fire of all age 

classes. While the extents of all fire age classes were included in this model as additive terms, 

the main influence on extinction probability was from the extent of intermediate (5-15 years) 

age fires which negatively influenced extinction probability. This relationship had a high degree 

of certainty, unlike the relationships for other fire age classes (Fig. 6a-d). Extinction was 

estimated to be < 5 % when these fires burnt ≥ 10 % of the surrounding buffer. Extent of recent 

fire (< 5 years) had an increased probability of extinction, but the relationship had a high 

degree of uncertainty. 

 

 

 

 



 

 

Table 7. List of models for Southern Brown Bandicoot extinction probability. Supported models are shaded in grey. 

Model dAIC weight npar n2ll 

psi(tpi),gam(.),eps(fire),p(season) 0 0.997 10 2475.67 

psi(tpi),gam(.),eps(harvesting),p(season) 13.26 0.0013 10 2488.93 

psi(tpi),gam(.),eps(rainfall),p(season) 13.88 0.001 7 2495.54 

psi(tpi),gam(.),eps(cat activity),p(season) 14.99 0.0006 7 2496.66 

psi(tpi),gam(.),eps(.),p(season) 17.25 0.0002 6 2500.91 

psi(tpi),gam(.),eps(thinning),p(season) 21.43 0 9 2499.1 

thinning = extent of thinning of three age classes: (recent; <5 years), (intermediate; 5-15 years) and (old; >15-30 years) in an additive model. 
harvesting = extent of harvesting of four age classes (recent; <5 years), (intermediate; 5-15 years), (old; >15-30 years) and (long undisturbed; >30 years) in an additive model. 
fire = extent of fire of four age classes (recent; <5 years), (intermediate; 5-15 years), (old; >15-30 years) and (long undisturbed; >30 years) in an additive model.  

rainfall = total rainfall in the calendar year preceding sampling. 
cat activity = total number of cat images recorded at each site. 
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d) 



 

 

Fig. 6. Relationships between extinction probability and extent of fire of different age classes: 

a) recent (<5 years), b) intermediate (5-15 years), c) old (>15-30 years) and d) long unburnt (>30 

years). 

 

In all, six candidate models assessed colonisation probability for SBBs (Table 8). A single 

model was supported which allowed colonisation probability to vary with the amount of rainfall 

in the calendar year preceding surveys. Colonisation was >0.2 when rainfall was equivalent 

to or above the long-term average for the study area (846 mm) (Fig. 7). 



 

 

Table 8. List of models for colonisation probability. Supported models are shaded in grey. 

Model dAIC weight npar n2ll 

psi(tpi),gam(rainfall),eps(fire),p(season) 0 0.8948 11 2468.36 

psi(tpi),gam(.),eps(fire),p(season) 5.3 0.0631 10 2475.67 

psi(tpi),gam(cat activity),eps(fire),p(season) 7.24 0.0239 11 2475.6 

psi(tpi),gam(harvesting),eps(fire),p(season) 8.91 0.0104 14 2471.27 

psi(tpi),gam(thinning),eps(fire),p(season) 10.39 0.005 13 2474.75 

psi(tpi),gam(fire),eps(fire),p(season) 11.56 0.0028 14 2473.92 

thinning = extent of thinning of three age classes: (recent; <5 years), (intermediate; 5-15 years) and (old; >15-30 years) in an additive model. 
harvesting = extent of harvesting of four age classes (recent; <5 years), (intermediate; 5-15 years), (old; >15-30 years) and (long undisturbed; >30 years) in an additive model. 
fire = extent of fire of four age classes (recent; <5 years), (intermediate; 5-15 years), (old; >15-30 years) and (long undisturbed; >30 years) in an additive model.  

rainfall = total rainfall in the calendar year preceding sampling. 
cat activity = total number of cat images recorded at each site. 



 

 

 

 

Fig. 7. Relationships between colonisation probability and the amount of rainfall in the calendar 

year preceding surveys. 

 

Trend 

Multi-season modelling of Southern Brown Bandicoot occupancy, calculated assuming 

median topographic position of the monitoring sites (lower slopes/gully), was relatively low 

over the period (2009-2019) of monitoring and has decreased by ~46 % from 0.24 in 2009/10 

to 0.13 in 2019 (Fig. 8). Occupancy fluctuated between years but was relatively stable between 

2009/10 and 2013 before showing a decline in 2014 and 2015 and then stabilising to a low 

level in subsequent years. A moderate level of precision is evident for the trend and additional 

sites would be needed to increase precision.  

 



 

 

 

Fig. 8. The trend for Southern Brown Bandicoot multi-season occupancy between 2009 and 

2019. Dashed lines are 95 % confidence intervals. Trends are calculated assuming median 

topographic position (equivalent to lower slopes/gully) when calculating initial occupancy. 

 

Limitations 

The major limitation for this analysis was the relatively low number of sites (n=40 sites) 

required for occupancy analyses that resulted from pooling adjacent cameras to the site level 

(n=80 cameras). This resulted in often low precision for relationships with covariates. 

Nonetheless, the long-time series achieved in a moderate level of precision for the trend in 

occupancy over time.  

 

Several important potential drivers (e.g., harvesting and fire) of trends in occupancy of SBBs 

across monitoring sites were captured for analysis, there were others that were not routinely 

available for each year of the monitoring program. Detection of SBBs has been shown to be 

negatively associated with shrub cover elsewhere (Claridge et al. 2019). LiDAR data captured 

early on in the monitoring program provided some measure of cover of different vertical 

profiles that could be related to initial occupancy. However, it was not possible to assess 

whether such cover had changed over time and also whether this influenced colonisation 

and/or extinction. Having some measure of habitat complexity for each year of monitoring 

would be instructive. 



 

 

 

Another limitation of the study was associated with the low detection rate in the first year of 

monitoring (2009). Naïve occupancy (0.08) in this year was the lowest for the monitoring 

period evaluated to date. This may be partly due to sampling only occurring in spring for this 

year, with this season having a lower detection probability than autumn which was sampled in 

addition to spring in all other years. The dynamic occupancy modelling framework used in this 

study establishes initial occupancy (in year 1 of monitoring) and then derives estimates of 

occupancy for subsequent years based on relationships established for colonisation and 

extinction. Since so few detections were recorded in year 1 of monitoring, estimates for initial 

occupancy were likely to be highly uncertain. To account for this, we pooled data from 2009 

and 2010 to establish more reliable relationships for initial occupancy and assumed conditions 

recorded in 2010 were present for records from 2009. Any influence of this assumption is 

moderated by use of disturbance age classes (e.g., a record is associated with disturbance 

up to 4 years old in the recent age class). 

 

The reliability of spatial layers available to calculate the extent of disturbance (fire and 

harvesting) in the local landscape of each sampling site should also be considered when 

interpreting results. For example, hazard reduction burn data was only available from 1992 

onwards, which may mean that the mapped extent of older fire age classes may be an 

underestimate. Furthermore, early mapping of fire may have included patches that remained 

unburnt.  

 

Another complication for the analysis is the potential for harvesting effects to be confounded 

with burning effects that resulted from a post-harvest burn, though this was not consistently 

applied after every harvesting operation. Presumably, future harvesting will also record 

whether a post-harvest burn was applied. 

 

Interpretation of results 

Detection probability for SBB varied with season of survey, with greater detection probability 

recorded for autumn (0.12 per day with two camera units) compared to spring (0.08 per day 

with two camera units). The greater detection in autumn may coincide with the peak in 

recruitment of juveniles into the population (Department of Sustainability, Environment, Water, 

Population and Communities 2011). Nevertheless, detection probability rates recorded for the 

SBB SMP monitoring program were similar to those recorded elsewhere (<0.1 at Nadgee, 

<0.15 at Ben Boyd; Claridge et al. 2019, and ~0.08 in the Grampians; Stevens et al. 2010).   

 



 

 

Initial occupancy (2009/2010) was positively associated with topographic position index (TPI), 

indicating greater SBB occupancy on upper slopes and ridges relative to gullies. This 

preference for higher topographic locations has been reported previously for SBBs in a nearby 

dry eucalypt forest site in south-eastern NSW (Claridge et al. 1991). There was also a negative 

relationship between initial occupancy and vegetation (understorey) cover between 6-8 m in 

height, which aligns with recently published research in conservation reserves immediately 

adjacent to our study area (Claridge et al. 2019). That same study found that increasing 

density of very low ground cover instead favoured the chances of detecting the species. It is 

possible that sites with an open understorey (shrub) layer (6-8 m high) could be inversely 

related to ground cover (predator refuge), which might only be captured by high resolution 

Lidar.  

 

Colonisation and extinction probability were associated with 12-monthly rainfall in the calendar 

year preceding surveys and the extent of fire of different ages, respectively. Other types of 

disturbance and the activity of a predator did not influence colonisation or extinction. Greater 

relative extents of intermediate (5-15 year) and older (>15-30 years) age class fires were 

associated with reduced extinction probability, though with a greater degree of uncertainty for 

the latter, potentially because of post-fire dense ground cover and a relatively low number of 

sites in this age class. Dynamics of ground cover after disturbance were not able to be 

modelled in this study, noting LiDAR captures a static picture of cover in the year it is captured 

and temporal LiDAR transects were not available. Recent fire had a weaker effect of 

increasing extinction, probably because of reduced cover against predators (cats). These 

results parallel those reported in the Grampians where SBB peaked in occupancy 15-20 years 

post fire (and again > 50 years since fire) (Hale et al. 2016).  

 

The study by Hale et al. (2016) also recorded a strong negative effect of drought (previous 18 

month rainfall), which is supported by the positive relationship between colonisation and 

rainfall in the calendar year preceding surveys in the current study. Rainfall in the last four 

years of the monitoring time series was well below the long-term average for the study area 

and this may in part reflect the lower occupancy levels relative to the start of the monitoring 

program, when rainfall was equivalent to or higher than the long-term average for four of the 

first five years of the program. Elsewhere, rainfall did not have significant effects on the 

population dynamics of ground mammals though specific results for bandicoot species were 

pooled together due to limitations in the sampling method (tracks in sand plots; Arthur et al. 

2012). In the Otway ranges of Victoria, terrestrial mammal occurrences (though noting SBB 

was not included in the study) were more strongly affected by habitat complexity than time 



 

 

since fire, coarse woody debris cover, or invasive predator (fox or cat) occurrence (Hradsky 

et al. 2017).  

 

Given we were unable to provide a reliable dynamic measure of habitat complexity, time since 

fire and harvesting most likely served as the nearest best surrogates, though the relative 

scales of both disturbances vary substantially in the study area. These results contrast with 

those of Dixon et al. (2019), who found that significantly more species were detected at long-

unburnt sites (>96 years since fire) than sites with more recent fire (0.5–12 years since the 

last fire), though again SBB were not part of that study and the sub-alpine woodland is very 

different to the coastal sclerophyll forest. The varied response of different fauna emphasises 

the need for fire mosaics, and especially recognition of long unburnt patches, though this may 

not be beneficial for SBB. It is important to acknowledge that the SBB monitoring study was 

limited to fires and harvesting experienced at the monitoring sites rather than a gradient 

specifically designed to contrast some of these disturbances, which may have produced 

clearer results.  

 

Widespread fox control in Victoria has also been found to increase occupancy rates of SBB, 

but this also interacted with rainfall (Robley et al. 2014) and potentially predation by feral cats 

(Arthur et al. 2012). Elsewhere in southeast Australian forests, the activity levels of bandicoots 

were not uniformly greater in areas subjected to fox baiting, as rainfall and habitat complexity 

potentially regulate activity (Claridge et al., 2010; Arthur et al. 2012). In the current study, feral 

cats were the most common and widespread predator with some fluctuation in occurrence 

among years. Few foxes were recorded (mostly at sites near human settlement) and wild dogs 

were intermediate. Feral cats likely have a role to play in preventing SBB occupancy from 

increasing above the low levels most recently recorded (~0.13 %) for the monitoring program, 

though cat activity was not associated with colonisation or extinction. Estimated occupancy in 

state forests was similar to that in nearby National Parks, with Ben Boyd (baited for foxes) 

supporting higher occupancy (even during a drier period) than Nadgee (unbaited) (Claridge et 

al. 2019). 

 

The overall trend for SBB in the study area was that of a ~46 % decline in 10 years, though 

the decline has not been steady in nature, with occupancy fluctuating within the time series. 

For example, despite year-to-year fluctuations occupancy remained at ~0.24 between 2009/10 

and 2013. A decline was evident in 2014 and 2015 before occupancy stabilised for the last 

four years of the monitoring program, albeit again with year-to-year fluctuations. The strong 

decline observed in 2014 and 2015 was associated with below average rainfall in the calendar 

year preceding 2014 surveys and a 36 % reduction in the extent of the intermediate fire (5-15 



 

 

years) age class in 2015. Below-average rainfall in years following the decline likely prevented 

SBB occupancy from increasing above the levels reached during the decline. Consideration 

should be given to alternative management or further research given the 46 % decline over a 

10-year period (i.e. decline > 30 % within 10 years), although widespread fires in 2019 limit 

some options. 

 

 

Together the results of the SBB SMP monitoring program and previous research emphasise 

the importance of habitat complexity as a refuge from predation and the potential for these to 

interact with disturbance, particularly those that may affect larger areas within SBB habitat. 

The results also suggest that drought has a role to play in the population dynamics of SBB.  

 

Recommendations 

Management 

• Habitat exclusion zones (16 out of 40 sites had no exclusion) and unlogged forest 

appeared to have little benefit for this species at the sites monitored given neither 

influenced occupancy or dynamic parameters (i.e., colonisation and extinction). 

However, we acknowledge the limitation of relatively low number of sites and suggest 

future monitoring expands the number of sites, specifically without exclusions to 

provide a more rigorous test of their effectiveness.   

• Disperse harvesting treatments in space and time to ensure it continues to have a 

minor influence on SBB occupancy or dynamic parameters that influence occupancy.  

• Give priority to maintaining an open understorey (shrub) layer, which is potentially 

related to denser ground cover in SBB habitat. Effects of dense (e.g. Allocasuarina) 

regrowth post-harvesting should be a management consideration (see below). 

• Review/reconsider how habitat is defined for the SBB. Greater weight should be given 

to upper slopes where understorey (shrub) cover is open. Particular forest types (e.g., 

Yertchuk) do not appear to have a strong association with SBB occupancy, rather 

preferred habitat occurs under a range of different forest types. 

• Aim for mosaic burning patterns that maximise the extent of 5-15 year age class in 

SBB habitat, especially previously harvested sites > 10 years in age where a high 

density of understorey (shrubs and saplings, e.g. Allocasuarina and eucalypt regrowth) 

may dominate. 

• Re-establish fox baiting program and assess methods for controlling feral cats. It is 

possible that fox baiting helped to ameliorate the effects of drought prior to 2018, but 

it could also have allowed increased feral cat activity and cat predation. Any new 



 

 

baiting program should be accompanied with monitoring to assess effectiveness and 

consider keeping some sites unbaited for comparison (e.g. Claridge et al. 2019). 

 

 

Monitoring 

• Continue to monitor SBB given recent widespread megafires, above-average rainfall 

following 2019, and SBB’s rare status and low occupancy in study areas, but include 

a measure of habitat complexity each year to specifically record ground cover and 

taller understorey cover (e.g. Claridge et al. 2019 or Hradsky et al. 2017). 

• Continue with two cameras per site to avoid drop in detection probability and maintain 

peanut butter and oats bait to be consistent with previous monitoring, noting that higher 

detection probability for the genus Isoodon is associated with truffle oil (Paull et al. 

2011). 

• Review sampling design. 

- The existing design may be amended to increase duration of deployments 

beyond 14 days (30 days - Claridge et al. 2019) in autumn when detection 

probability is greater. i.e., focus sampling effort in autumn instead of sampling 

in spring. Declining detection rates with time since deployment (14-day period) 

has been reported for the genus Isoodon (Paull et al. 2011), so an assessment 

should be made early on to establish whether the trade-off of ceasing spring 

sampling is offset by longer duration sampling in autumn. 

- Add additional sites to target higher suitability habitat (upper slope areas with 

less understorey cover), but without exclusion areas.  

• Regularly tag photos and maintain careful record keeping of dates that cameras were 

deployed. 

• Undertake analysis of data more frequently (e.g., every three years) to assess whether 

management is affecting (positively or negatively) trends in SBB occupancy. 

• Analyse other species from dataset, giving priority to long-nosed potoroos, which were 

more commonly recorded than SBB. 
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